zecsy/tests/zecsy.cpp
2025-02-20 02:55:04 +03:00

574 lines
12 KiB
C++

#include <catch2/catch_test_macros.hpp>
#define CATCH_CONFIG_MAIN
#include <catch2/catch_all.hpp>
#include "../system_scheduler.hpp"
#include "../zecsy.hpp"
using namespace zecsy;
TEST_CASE("Create a single entity and verify its existence")
{
world w;
auto e = w.make_entity();
REQUIRE(w.is_alive(e));
}
TEST_CASE("Destroy an entity and ensure it no longer exists in the world")
{
world w;
auto e = w.make_entity();
w.destroy_entity(e);
REQUIRE_FALSE(w.is_alive(e));
}
TEST_CASE("Entity #0 should be reserved and never used")
{
world w;
auto e = w.make_entity();
REQUIRE(e != 0);
REQUIRE_FALSE(w.is_alive(0));
}
struct ChoosenOne
{
};
TEST_CASE("Entity shouldn't have a component that wasn't attached to it")
{
world w;
auto e = w.make_entity();
REQUIRE_FALSE(w.has<ChoosenOne>(e));
}
TEST_CASE("Attempt of getting non-owned component should throw")
{
world w;
auto e = w.make_entity();
REQUIRE_THROWS(w.get<ChoosenOne>(e));
}
TEST_CASE("Attach a simple component to an entity and verify it is correctly "
"associated")
{
world w;
auto e1 = w.make_entity();
w.set(e1, ChoosenOne{});
REQUIRE(w.has<ChoosenOne>(e1));
auto e2 = w.make_entity();
w.set(e2, ChoosenOne{});
REQUIRE(w.has<ChoosenOne>(e2));
}
struct Comp
{
int v = 0;
};
TEST_CASE("Retrieve a component from an entity and verify its data matches "
"what was set")
{
world w;
auto e = w.make_entity();
w.set(e, Comp());
REQUIRE(w.get<Comp>(e).v == 0);
w.get<Comp>(e).v = 77;
REQUIRE(w.get<Comp>(e).v == 77);
}
TEST_CASE(
"Remove a component from an entity and verify it is no longer attached")
{
world w;
auto e = w.make_entity();
w.set(e, ChoosenOne{});
REQUIRE_NOTHROW(w.remove<ChoosenOne>(e));
REQUIRE_FALSE(w.has<ChoosenOne>(e));
w.set(e, ChoosenOne{});
REQUIRE_NOTHROW(w.remove<ChoosenOne>(e));
REQUIRE_FALSE(w.has<ChoosenOne>(e));
}
TEST_CASE("Addresses of removed components should be reused")
{
world w;
std::vector<entity_id> entities;
std::vector<ChoosenOne*> addr;
const int N = 4;
for(int i = 0; i < 2; ++i)
{
for(int j = 0; j < N; ++j)
{
entities.emplace_back(w.make_entity());
w.set<ChoosenOne>(entities.back());
}
if(addr.empty())
{
for(int j = 0; j < N; ++j)
{
addr.emplace_back(&w.get<ChoosenOne>(entities[j]));
}
}
else
{
/*
* Gotta reverse it because now we reuse ids in LIFO order
*/
std::reverse(addr.begin(), addr.end());
for(int j = 0; j < N; ++j)
{
REQUIRE(&w.get<ChoosenOne>(entities[j]) == addr[j]);
}
}
for(auto e: entities)
{
w.remove<ChoosenOne>(e);
}
entities.clear();
}
}
TEST_CASE("Attach multiple components to an entity and verify all are "
"correctly stored and retrievable")
{
world w;
auto e = w.make_entity();
w.set(e, ChoosenOne{}, Comp{});
REQUIRE(w.has<ChoosenOne, Comp>(e));
w.remove<ChoosenOne, Comp>(e);
REQUIRE_FALSE(w.has<ChoosenOne, Comp>(e));
REQUIRE_FALSE(w.has<ChoosenOne>(e));
REQUIRE_FALSE(w.has<Comp>(e));
}
TEST_CASE("Create a simple system that processes entities with a specific "
"component and verify it executes correctly")
{
struct Component
{
int value = 0;
};
world w;
auto e0 = w.make_entity(), e1 = w.make_entity();
w.set<Component>(e0); // or e0.set(Component{})
w.set(e1, Component{20});
REQUIRE(w.get<Component>(e0).value == 0);
REQUIRE(w.get<Component>(e1).value == 20);
/*
* Really wanna deduce it to w.query([](Component&){}),
* but I have some troubles with it
*/
w.query<Component>([](entity_id e, Component& c) { c.value++; });
REQUIRE(w.get<Component>(e0).value == 1);
REQUIRE(w.get<Component>(e1).value == 21);
}
TEST_CASE("Test a systems ability to query and process only entities with a "
"specific combination of components")
{
struct C0
{
int value = 0;
};
struct C1
{
int value = 10;
};
world w;
auto e0 = w.make_entity();
w.set(e0, C0{}, C1{});
auto e1 = w.make_entity();
w.set(e1, C0{});
auto e2 = w.make_entity();
w.set(e2, C1{});
REQUIRE(w.get<C0>(e0).value == 0);
REQUIRE(w.get<C1>(e0).value == 10);
w.query<C0, C1>([e0](entity_id e, C0& c0, C1& c1)
{
REQUIRE(e == e0);
c0.value++;
c1.value++;
});
REQUIRE(w.get<C0>(e0).value == 1);
REQUIRE(w.get<C1>(e0).value == 11);
REQUIRE(w.get<C0>(e1).value == 0);
REQUIRE(w.get<C1>(e2).value == 10);
REQUIRE_FALSE(w.has<C1>(e1));
REQUIRE_FALSE(w.has<C0>(e2));
}
TEST_CASE("Systems execute at correct frequencies")
{
world w;
system_scheduler scheduler;
int fast_count = 0;
int slow_count = 0;
// Add a fast system (60 Hz)
scheduler.add_system(60, [&](float dt) { fast_count++; });
// Add a slow system (1 Hz)
scheduler.add_system(1, [&](float dt) { slow_count++; });
// Simulate 2 seconds of updates at 120 FPS
for(int i = 0; i < 240; ++i)
{
scheduler.update(1.0f / 120.0f);
}
// Verify counts
REQUIRE(fast_count == 120); // 60 Hz system should execute 60 times
REQUIRE(slow_count == 2); // 1 Hz system should execute 1 time
}
TEST_CASE("Systems handle zero-frequency gracefully")
{
world w;
system_scheduler scheduler;
int zero_count = 0;
// Add a zero-frequency system (should never execute)
scheduler.add_system(0, [&](float dt) { zero_count++; });
// Simulate 1 second of updates at 60 FPS
for(int i = 0; i < 60; ++i)
{
scheduler.update(1.0f / 60.0f);
}
// Verify zero-frequency system never executes
REQUIRE(zero_count == 0);
}
TEST_CASE("Systems handle varying update rates")
{
world w;
system_scheduler scheduler;
int varying_count = 0;
// Add a system with varying frequency (10 Hz)
scheduler.add_system(10, [&](float dt) { varying_count++; });
// Simulate 1 second of updates at 30 FPS
for(int i = 0; i < 30; ++i)
{
scheduler.update(1.0f / 30.0f);
}
// Verify varying-frequency system executes 10 times
REQUIRE(varying_count == 10);
}
TEST_CASE("Systems handle large time steps")
{
world w;
system_scheduler scheduler;
int large_step_count = 0;
// Add a system (1 Hz)
scheduler.add_system(1, [&](float dt) { large_step_count++; });
// Simulate a large time step (2 seconds)
scheduler.update(2.0f);
// Verify system executes twice (accumulator handles large steps)
REQUIRE(large_step_count == 2);
}
TEST_CASE("Systems handle multiple frequencies")
{
world w;
system_scheduler scheduler;
int fast_count = 0;
int medium_count = 0;
int slow_count = 0;
// Add systems with different frequencies
scheduler.add_system(60, [&](float dt) { fast_count++; });
scheduler.add_system(30, [&](float dt) { medium_count++; });
scheduler.add_system(1, [&](float dt) { slow_count++; });
// Simulate 1 second of updates at 120 FPS
for(int i = 0; i < 120; ++i)
{
scheduler.update(1.0f / 120.0f);
}
// Verify counts
REQUIRE(fast_count == 60); // 60 Hz system
REQUIRE(medium_count == 30); // 30 Hz system
REQUIRE(slow_count == 1); // 1 Hz system
}
TEST_CASE("Systems handle fractional frequencies")
{
world w;
system_scheduler scheduler;
int fractional_count = 0;
// Add a system with fractional frequency (0.5 Hz)
scheduler.add_system(0.5f, [&](float dt) { fractional_count++; });
// Simulate 4 seconds of updates at 60 FPS
for(int i = 0; i < 240; ++i)
{
scheduler.update(1.0f / 60.0f);
}
// Verify fractional-frequency system executes twice (0.5 Hz = 2 times in 4
// seconds)
REQUIRE(fractional_count == 2);
}
TEST_CASE("Systems handle zero delta time")
{
world w;
system_scheduler scheduler;
int zero_dt_count = 0;
// Add a system (1 Hz)
scheduler.add_system(1, [&](float dt) { zero_dt_count++; });
// Simulate zero delta time
scheduler.update(0.0f);
// Verify system does not execute
REQUIRE(zero_dt_count == 0);
}
TEST_CASE("Systems handle negative delta time")
{
world w;
system_scheduler scheduler;
int count = 0;
// Add a system (1 Hz)
scheduler.add_system(1, [&](float dt) { count++; });
// Simulate negative delta time
scheduler.update(-1.0f);
// Verify system does not execute
REQUIRE(count == 0);
scheduler.update(2.0f);
REQUIRE(count == 2);
}
TEST_CASE("Entity count tracking")
{
world w;
REQUIRE(w.entity_count() == 0);
const auto e1 = w.make_entity();
const auto e2 = w.make_entity();
REQUIRE(w.entity_count() == 2);
w.destroy_entity(e1);
REQUIRE(w.entity_count() == 1);
}
TEST_CASE("Component counting mechanisms")
{
struct Health
{
int value;
};
struct Position
{
float x, y;
};
world w;
auto e = w.make_entity();
REQUIRE(w.component_count<Health>() == 0);
REQUIRE(w.total_component_count() == 0);
w.set<Health>(e);
REQUIRE(w.component_count<Health>() == 1);
REQUIRE(w.total_component_count() == 1);
w.set<Position>(e);
REQUIRE(w.component_count<Position>() == 1);
REQUIRE(w.total_component_count() == 2);
w.remove<Health>(e);
REQUIRE(w.component_count<Health>() == 0);
REQUIRE(w.total_component_count() == 1);
}
TEST_CASE("Archetype signature management")
{
struct A
{
};
struct B
{
};
struct C
{
};
world w;
// Initial state: empty archetype
REQUIRE(w.archetype_count() == 0);
auto e0 = w.make_entity();
REQUIRE(w.archetype_count() == 1); //<>
// Add first component
w.set<A>(e0);
REQUIRE(w.archetype_count() == 1); //<A>
w.set<B>(e0);
REQUIRE(w.archetype_count() == 1); //<A, B>
w.set<C>(e0);
REQUIRE(w.archetype_count() == 1); //<A, B, C>
w.remove<A, B>(e0);
REQUIRE(w.archetype_count() == 1); //<C>
auto e1 = w.make_entity();
w.set<A, B>(e1);
REQUIRE(w.archetype_count() == 2); //<C>, <A, B>
w.remove<C>(e0);
REQUIRE(w.archetype_count() == 2); //<>, <A, B>
w.set<A>(e0);
REQUIRE(w.archetype_count() == 2); //<A>, <A, B>
w.set<B>(e0);
REQUIRE(w.archetype_count() == 1); //<A, B>
w.destroy_entity(e0);
REQUIRE(w.archetype_count() == 1); //<A, B>
w.destroy_entity(e1);
REQUIRE(w.archetype_count() == 0);
}
TEST_CASE("Component distribution across archetypes")
{
struct A
{
};
struct B
{
};
world w;
// Create 10 entities in different configurations
for(int i = 0; i < 5; ++i)
{
auto e = w.make_entity();
w.set<A>(e);
}
for(int i = 0; i < 3; ++i)
{
auto e = w.make_entity();
w.set<A, B>(e);
}
for(int i = 0; i < 2; ++i)
{
auto e = w.make_entity();
w.set<B>(e);
}
// Verify distribution
REQUIRE(w.entity_count() == 10);
REQUIRE(w.component_count<A>() == 8);
REQUIRE(w.component_count<B>() == 5);
REQUIRE(w.archetype_count() == 3); //<A>, <A, B>, <B>
}
TEST_CASE("Entity inspection")
{
struct Transform
{
float x, y;
};
struct Renderable
{
};
world w;
auto e = w.make_entity();
REQUIRE(w.components_in_entity(e) == 0);
w.set<Transform>(e);
REQUIRE(w.components_in_entity(e) == 1);
w.set<Renderable>(e);
REQUIRE(w.components_in_entity(e) == 2);
w.remove<Transform>(e);
REQUIRE(w.components_in_entity(e) == 1);
}