Compare commits

..

3 commits
main ... c

Author SHA1 Message Date
3105b8806c dummy archetypes 2025-03-20 20:09:25 +03:00
93a7f31757 make/destroy world/entities 2025-03-20 18:12:46 +03:00
d5b20184b8 init 2025-03-19 21:08:58 +03:00
9 changed files with 240 additions and 1467 deletions

1
.gitignore vendored
View file

@ -1,3 +1,2 @@
build/
.cache/
CMakeUserPresets.json

View file

@ -1,33 +1,25 @@
cmake_minimum_required(VERSION 3.22.0)
set(PROJECT_NAME zecsy)
project(zecsy LANGUAGES C)
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release)
endif()
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED ON)
set(CMAKE_CXX_FLAGS "-Wall -Wextra")
set(CMAKE_CXX_FLAGS_DEBUG "-g")
set(CMAKE_CXX_FLAGS_RELEASE "-O3")
project(${PROJECT_NAME})
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
option(BUILD_ZECSY_TESTS "Build tests?" ON)
find_package(nlohmann_json)
add_library(zecsy STATIC zecsy.h stb_ds.h)
set_target_properties(zecsy PROPERTIES LINKER_LANGUAGE C)
add_library(zecsy STATIC zecsy.hpp)
set_target_properties(zecsy PROPERTIES LINKER_LANGUAGE CXX)
#######################################################
if(${BUILD_ZECSY_TESTS})
find_package(Catch2 REQUIRED)
file(GLOB TEST_SRC ./tests/*.cpp ./tests/*.hpp ./tests/*.h)
add_executable(tests ${TEST_SRC})
target_link_libraries(tests PRIVATE Catch2::Catch2WithMain zecsy)
Include(FetchContent)
FetchContent_Declare(
clove-unit
GIT_REPOSITORY https://github.com/fdefelici/clove-unit.git
GIT_TAG master # or eventually any branch, tag or commit sha
)
FetchContent_MakeAvailable(clove-unit)
include(CTest)
include(Catch)
catch_discover_tests(tests)
add_executable(tests tests/zecsy.c)
target_link_libraries(tests clove-unit zecsy)
endif()

28
CMakePresets.json Normal file
View file

@ -0,0 +1,28 @@
{
"version": 3,
"cmakeMinimumRequired": {
"major": 3,
"minor": 15,
"patch": 0
},
"configurePresets": [
{
"name": "clang",
"displayName": "Clang Compiler",
"description": "Use Clang compilers",
"generator": "Ninja",
"binaryDir": "${sourceDir}/build",
"cacheVariables": {
"CMAKE_C_COMPILER": "clang"
},
"environment": {}
}
],
"buildPresets": [
{
"name": "clang-build",
"configurePreset": "clang",
"configuration": "Release"
}
]
}

View file

@ -1,9 +0,0 @@
[requires]
catch2/3.8.0
[generators]
CMakeDeps
CMakeToolchain
[layout]
cmake_layout

View file

@ -1,55 +0,0 @@
#pragma once
#include <concepts>
#include <functional>
#include <vector>
namespace zecsy
{
class system_scheduler final
{
public:
void add_system(float freq, std::invocable<float> auto&& func);
void add_system(int freq, std::invocable<float> auto&& func);
void update(float dt);
private:
struct system_handler
{
double interval;
double accumulator = 0.0f;
std::function<void(float)> callback;
};
std::vector<system_handler> systems;
};
inline void system_scheduler::add_system(float freq,
std::invocable<float> auto&& func)
{
systems.emplace_back(1.0f / freq, 0.0f,
std::forward<decltype(func)>(func));
}
inline void system_scheduler::add_system(int freq,
std::invocable<float> auto&& func)
{
add_system(float(freq), func);
}
inline void system_scheduler::update(float dt)
{
dt = std::max(0.0f, dt);
for(auto& s: systems)
{
s.accumulator += dt;
while(s.accumulator >= s.interval)
{
s.callback(dt);
s.accumulator -= s.interval;
}
}
}
} // namespace zecsy

58
tests/zecsy.c Normal file
View file

@ -0,0 +1,58 @@
#include <stdio.h>
#include <stdlib.h>
#define CLOVE_IMPLEMENTATION
#include <clove-unit.h>
#define ZECSY_IMPLEMENTATION
#include "../zecsy.h"
CLOVE_TEST(make_and_delete_empty_world)
{
world* w = NULL;
make_world(&w);
CLOVE_NOT_NULL(w);
CLOVE_SIZET_EQ(RESERVED_ENTITY_ID + 1, w->entity_id_counter);
CLOVE_SIZET_EQ(0, w->alive_entities);
destroy_world(&w);
CLOVE_NULL(w);
}
CLOVE_TEST(pass_null_to_world_free)
{
world* w = NULL;
destroy_world(&w);
CLOVE_NULL(w);
}
CLOVE_TEST(alive_entities)
{
world* w = NULL;
make_world(&w);
entity_id e = make_entity(w);
CLOVE_SIZET_NE(e, RESERVED_ENTITY_ID);
CLOVE_IS_TRUE(is_alive(w, e));
archetype_signature sig = arhetype_of(w, e);
archetype_signature empty_sig = {0};
CLOVE_IS_TRUE(is_same(sig, empty_sig));
destroy_world(&w);
}
CLOVE_TEST(dead_entities)
{
world* w = NULL;
make_world(&w);
entity_id e = make_entity(w);
destroy_entity(w, e);
CLOVE_IS_FALSE(is_alive(w, e));
destroy_world(&w);
}
CLOVE_RUNNER()

View file

@ -1,989 +0,0 @@
#include <catch2/catch_test_macros.hpp>
#define CATCH_CONFIG_MAIN
#include <catch2/catch_all.hpp>
#include "../system_scheduler.hpp"
#include "../zecsy.hpp"
using namespace zecsy;
TEST_CASE("Create a single entity and verify its existence", "[test]")
{
world w;
auto e = w.make_entity();
REQUIRE(w.is_alive(e));
}
TEST_CASE("Destroy an entity and ensure it no longer exists in the world",
"[test]")
{
world w;
auto e = w.make_entity();
w.destroy_entity(e);
REQUIRE_FALSE(w.is_alive(e));
}
TEST_CASE("Entity #0 should be reserved and never used", "[test]")
{
world w;
auto e = w.make_entity();
REQUIRE(e != 0);
REQUIRE_FALSE(w.is_alive(0));
}
struct ChosenOne
{
};
TEST_CASE("Entity shouldn't have a component that wasn't attached to it",
"[test]")
{
world w;
auto e = w.make_entity();
REQUIRE_FALSE(w.has<ChosenOne>(e));
}
TEST_CASE("Attempt of getting non-owned component should throw", "[test]")
{
world w;
auto e = w.make_entity();
REQUIRE_THROWS(w.get<ChosenOne>(e));
}
TEST_CASE("Attach a simple component to an entity and verify it is correctly "
"associated",
"[test]")
{
world w;
auto e1 = w.make_entity();
w.set(e1, ChosenOne{});
REQUIRE(w.has<ChosenOne>(e1));
auto e2 = w.make_entity();
w.set(e2, ChosenOne{});
REQUIRE(w.has<ChosenOne>(e2));
}
struct Comp
{
int v = 0;
};
TEST_CASE("Retrieve a component from an entity and verify its data matches "
"what was set",
"[test]")
{
world w;
auto e = w.make_entity();
w.set(e, Comp());
REQUIRE(w.get<Comp>(e).v == 0);
w.get<Comp>(e).v = 77;
REQUIRE(w.get<Comp>(e).v == 77);
w.ensure<Comp>(e).v = 4;
REQUIRE(w.ensure<Comp>(e).v == 4);
REQUIRE(w.get<Comp>(e).v == 4);
w.remove<Comp>(e);
w.ensure<Comp>(e).v = 123;
REQUIRE(w.get<Comp>(e).v == 123);
}
TEST_CASE(
"Remove a component from an entity and verify it is no longer attached",
"[test]")
{
world w;
auto e = w.make_entity();
w.set(e, ChosenOne{});
REQUIRE_NOTHROW(w.remove<ChosenOne>(e));
REQUIRE_FALSE(w.has<ChosenOne>(e));
w.set(e, ChosenOne{});
REQUIRE_NOTHROW(w.remove<ChosenOne>(e));
REQUIRE_FALSE(w.has<ChosenOne>(e));
}
TEST_CASE("Addresses of removed components should be reused", "[test]")
{
world w;
std::vector<entity_id> entities;
std::vector<ChosenOne*> addr;
const int N = 4;
for(int i = 0; i < 2; ++i)
{
for(int j = 0; j < N; ++j)
{
entities.emplace_back(w.make_entity());
w.set<ChosenOne>(entities.back());
}
if(addr.empty())
{
for(int j = 0; j < N; ++j)
{
addr.emplace_back(&w.get<ChosenOne>(entities[j]));
}
}
else
{
/*
* Gotta reverse it because now we reuse ids in LIFO order
*/
std::reverse(addr.begin(), addr.end());
for(int j = 0; j < N; ++j)
{
REQUIRE(&w.get<ChosenOne>(entities[j]) == addr[j]);
}
}
for(auto e: entities)
{
w.remove<ChosenOne>(e);
}
entities.clear();
}
}
TEST_CASE("Attach multiple components to an entity and verify all are "
"correctly stored and retrievable",
"[test]")
{
world w;
auto e = w.make_entity();
w.set(e, ChosenOne{}, Comp{});
REQUIRE(w.has<ChosenOne, Comp>(e));
w.remove<ChosenOne, Comp>(e);
REQUIRE_FALSE(w.has<ChosenOne, Comp>(e));
REQUIRE_FALSE(w.has<ChosenOne>(e));
REQUIRE_FALSE(w.has<Comp>(e));
}
TEST_CASE("Create a simple system that processes entities with a specific "
"component and verify it executes correctly",
"[test]")
{
struct Component
{
int value = 0;
};
world w;
auto e0 = w.make_entity(), e1 = w.make_entity();
w.set<Component>(e0); // or e0.set(Component{})
w.set(e1, Component{20});
REQUIRE(w.get<Component>(e0).value == 0);
REQUIRE(w.get<Component>(e1).value == 20);
/*
* Really wanna deduce it to w.query([](Component&){}),
* but I have some troubles with it
*/
w.query<Component>([](entity_id e, Component& c) { c.value++; });
REQUIRE(w.filter<Component>().size() == 2);
REQUIRE(w.get<Component>(e0).value == 1);
REQUIRE(w.get<Component>(e1).value == 21);
}
TEST_CASE("Test a systems ability to query and process only entities with a "
"specific combination of components",
"[test]")
{
struct C0
{
int value = 0;
};
struct C1
{
int value = 10;
};
world w;
auto e0 = w.make_entity();
w.set(e0, C0{}, C1{});
auto e1 = w.make_entity();
w.set(e1, C0{});
auto e2 = w.make_entity();
w.set(e2, C1{});
REQUIRE(w.get<C0>(e0).value == 0);
REQUIRE(w.get<C1>(e0).value == 10);
w.query<C0, C1>(
[e0](entity_id e, C0& c0, C1& c1)
{
REQUIRE(e == e0);
c0.value++;
c1.value++;
});
REQUIRE(w.filter<C0, C1>().size() == 1);
REQUIRE(w.filter<C0, C1>()[0] == e0);
REQUIRE(w.get<C0>(e0).value == 1);
REQUIRE(w.get<C1>(e0).value == 11);
REQUIRE(w.get<C0>(e1).value == 0);
REQUIRE(w.get<C1>(e2).value == 10);
REQUIRE_FALSE(w.has<C1>(e1));
REQUIRE_FALSE(w.has<C0>(e2));
}
TEST_CASE("Systems execute at correct frequencies", "[test]")
{
world w;
system_scheduler scheduler;
int fast_count = 0;
int slow_count = 0;
// Add a fast system (60 Hz)
scheduler.add_system(60, [&](float dt) { fast_count++; });
// Add a slow system (1 Hz)
scheduler.add_system(1, [&](float dt) { slow_count++; });
// Simulate 2 seconds of updates at 120 FPS
for(int i = 0; i < 240; ++i)
{
scheduler.update(1.0f / 120.0f);
}
// Verify counts
REQUIRE(fast_count == 120); // 60 Hz system should execute 60 times
REQUIRE(slow_count == 2); // 1 Hz system should execute 1 time
}
TEST_CASE("Systems handle zero-frequency gracefully", "[test]")
{
world w;
system_scheduler scheduler;
int zero_count = 0;
// Add a zero-frequency system (should never execute)
scheduler.add_system(0, [&](float dt) { zero_count++; });
// Simulate 1 second of updates at 60 FPS
for(int i = 0; i < 60; ++i)
{
scheduler.update(1.0f / 60.0f);
}
// Verify zero-frequency system never executes
REQUIRE(zero_count == 0);
}
TEST_CASE("Systems handle varying update rates", "[test]")
{
world w;
system_scheduler scheduler;
int varying_count = 0;
// Add a system with varying frequency (10 Hz)
scheduler.add_system(10, [&](float dt) { varying_count++; });
// Simulate 1 second of updates at 30 FPS
for(int i = 0; i < 30; ++i)
{
scheduler.update(1.0f / 30.0f);
}
// Verify varying-frequency system executes 10 times
REQUIRE(varying_count == 10);
}
TEST_CASE("Systems handle large time steps", "[test]")
{
world w;
system_scheduler scheduler;
int large_step_count = 0;
// Add a system (1 Hz)
scheduler.add_system(1, [&](float dt) { large_step_count++; });
// Simulate a large time step (2 seconds)
scheduler.update(2.0f);
// Verify system executes twice (accumulator handles large steps)
REQUIRE(large_step_count == 2);
}
TEST_CASE("Systems handle multiple frequencies", "[test]")
{
world w;
system_scheduler scheduler;
int fast_count = 0;
int medium_count = 0;
int slow_count = 0;
// Add systems with different frequencies
scheduler.add_system(60, [&](float dt) { fast_count++; });
scheduler.add_system(30, [&](float dt) { medium_count++; });
scheduler.add_system(1, [&](float dt) { slow_count++; });
// Simulate 1 second of updates at 120 FPS
for(int i = 0; i < 120; ++i)
{
scheduler.update(1.0f / 120.0f);
}
// Verify counts
REQUIRE(fast_count == 60); // 60 Hz system
REQUIRE(medium_count == 30); // 30 Hz system
REQUIRE(slow_count == 1); // 1 Hz system
}
TEST_CASE("Systems handle fractional frequencies", "[test]")
{
world w;
system_scheduler scheduler;
int fractional_count = 0;
// Add a system with fractional frequency (0.5 Hz)
scheduler.add_system(0.5f, [&](float dt) { fractional_count++; });
// Simulate 4 seconds of updates at 60 FPS
for(int i = 0; i < 240; ++i)
{
scheduler.update(1.0f / 60.0f);
}
// Verify fractional-frequency system executes twice (0.5 Hz = 2 times in 4
// seconds)
REQUIRE(fractional_count == 2);
}
TEST_CASE("Systems handle zero delta time", "[test]")
{
world w;
system_scheduler scheduler;
int zero_dt_count = 0;
// Add a system (1 Hz)
scheduler.add_system(1, [&](float dt) { zero_dt_count++; });
// Simulate zero delta time
scheduler.update(0.0f);
// Verify system does not execute
REQUIRE(zero_dt_count == 0);
}
TEST_CASE("Systems handle negative delta time", "[test]")
{
world w;
system_scheduler scheduler;
int count = 0;
// Add a system (1 Hz)
scheduler.add_system(1, [&](float dt) { count++; });
// Simulate negative delta time
scheduler.update(-1.0f);
// Verify system does not execute
REQUIRE(count == 0);
scheduler.update(2.0f);
REQUIRE(count == 2);
}
TEST_CASE("Entity count tracking", "[test]")
{
world w;
REQUIRE(w.entity_count() == 0);
const auto e1 = w.make_entity();
const auto e2 = w.make_entity();
REQUIRE(w.entity_count() == 2);
w.destroy_entity(e1);
REQUIRE(w.entity_count() == 1);
}
TEST_CASE("Component counting mechanisms", "[test]")
{
struct Health
{
int value;
};
struct Position
{
float x, y;
};
world w;
auto e = w.make_entity();
REQUIRE(w.component_count<Health>() == 0);
REQUIRE(w.total_component_count() == 0);
w.set<Health>(e);
REQUIRE(w.component_count<Health>() == 1);
REQUIRE(w.total_component_count() == 1);
w.set<Position>(e);
REQUIRE(w.component_count<Position>() == 1);
REQUIRE(w.total_component_count() == 2);
w.remove<Health>(e);
REQUIRE(w.component_count<Health>() == 0);
REQUIRE(w.total_component_count() == 1);
}
TEST_CASE("Archetype signature management", "[test]")
{
struct A
{
};
struct B
{
};
struct C
{
};
world w;
// Initial state: empty archetype
REQUIRE(w.archetype_count() == 0);
auto e0 = w.make_entity();
REQUIRE(w.archetype_count() == 1); //<>
// Add first component
w.set<A>(e0);
REQUIRE(w.archetype_count() == 1); //<A>
w.set<B>(e0);
REQUIRE(w.archetype_count() == 1); //<A, B>
w.set<C>(e0);
REQUIRE(w.archetype_count() == 1); //<A, B, C>
w.remove<A, B>(e0);
REQUIRE(w.archetype_count() == 1); //<C>
auto e1 = w.make_entity();
w.set<A, B>(e1);
REQUIRE(w.archetype_count() == 2); //<C>, <A, B>
w.remove<C>(e0);
REQUIRE(w.archetype_count() == 2); //<>, <A, B>
w.set<A>(e0);
REQUIRE(w.archetype_count() == 2); //<A>, <A, B>
w.set<B>(e0);
REQUIRE(w.archetype_count() == 1); //<A, B>
w.destroy_entity(e0);
REQUIRE(w.archetype_count() == 1); //<A, B>
w.destroy_entity(e1);
REQUIRE(w.archetype_count() == 0);
}
TEST_CASE("Component distribution across archetypes", "[test]")
{
struct A
{
};
struct B
{
};
world w;
// Create 10 entities in different configurations
for(int i = 0; i < 5; ++i)
{
auto e = w.make_entity();
w.set<A>(e);
}
for(int i = 0; i < 3; ++i)
{
auto e = w.make_entity();
w.set<A, B>(e);
}
for(int i = 0; i < 2; ++i)
{
auto e = w.make_entity();
w.set<B>(e);
}
// Verify distribution
REQUIRE(w.entity_count() == 10);
REQUIRE(w.component_count<A>() == 8);
REQUIRE(w.component_count<B>() == 5);
REQUIRE(w.archetype_count() == 3); //<A>, <A, B>, <B>
}
TEST_CASE("Entity inspection", "[test]")
{
struct Transform
{
float x, y;
};
struct Renderable
{
};
world w;
auto e = w.make_entity();
REQUIRE(w.components_in_entity(e) == 0);
w.set<Transform>(e);
REQUIRE(w.components_in_entity(e) == 1);
w.set<Renderable>(e);
REQUIRE(w.components_in_entity(e) == 2);
w.remove<Transform>(e);
REQUIRE(w.components_in_entity(e) == 1);
}
namespace
{
// Benchmark components
struct Position
{
float x, y;
};
struct Velocity
{
float dx, dy;
};
struct Health
{
int value;
};
struct BigData
{
char buffer[4096];
};
// Benchmark entity counts
constexpr int SMALL = 1'000;
constexpr int MEDIUM = 10'000;
constexpr int LARGE = 50'000;
} // namespace
TEST_CASE("Core operations benchmarks", "[benchmark]")
{
BENCHMARK_ADVANCED("Create entities [1000]")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < SMALL; ++i)
{
w.make_entity();
}
return w.entity_count();
});
};
BENCHMARK_ADVANCED("Create entities [10000]")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < MEDIUM; ++i)
{
w.make_entity();
}
return w.entity_count();
});
};
BENCHMARK_ADVANCED("Create entities [50000]")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < LARGE; ++i)
{
w.make_entity();
}
return w.entity_count();
});
};
BENCHMARK_ADVANCED("Create entities with components [1000]")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < SMALL; ++i)
{
auto e = w.make_entity();
w.set<Position>(e, {1.0f, 2.0f});
w.set<Velocity>(e, {3.0f, 4.0f});
}
return w.total_component_count();
});
};
BENCHMARK_ADVANCED("Create entities with components [10000]")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < MEDIUM; ++i)
{
auto e = w.make_entity();
w.set<Position>(e, {1.0f, 2.0f});
w.set<Velocity>(e, {3.0f, 4.0f});
}
return w.total_component_count();
});
};
BENCHMARK_ADVANCED("Create entities with components [50000]")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < LARGE; ++i)
{
auto e = w.make_entity();
w.set<Position>(e, {1.0f, 2.0f});
w.set<Velocity>(e, {3.0f, 4.0f});
}
return w.total_component_count();
});
};
}
TEST_CASE("Component operations benchmarks", "[benchmark]")
{
BENCHMARK_ADVANCED("Add component to existing entities [1000]")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < SMALL; ++i)
{
entities.push_back(w.make_entity());
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.set<Health>(e, {100});
}
return w.component_count<Health>();
});
};
BENCHMARK_ADVANCED("Add component to existing entities [10000]")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < MEDIUM; ++i)
{
entities.push_back(w.make_entity());
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.set<Health>(e, {100});
}
return w.component_count<Health>();
});
};
BENCHMARK_ADVANCED("Add component to existing entities [50000]")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < LARGE; ++i)
{
entities.push_back(w.make_entity());
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.set<Health>(e, {100});
}
return w.component_count<Health>();
});
};
BENCHMARK_ADVANCED("Remove component from entities [1000]")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < SMALL; ++i)
{
auto e = w.make_entity();
w.set<Health>(e, {100});
entities.push_back(e);
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.remove<Health>(e);
}
return w.component_count<Health>();
});
};
BENCHMARK_ADVANCED("Remove component from entities [10000]")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < MEDIUM; ++i)
{
auto e = w.make_entity();
w.set<Health>(e, {100});
entities.push_back(e);
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.remove<Health>(e);
}
return w.component_count<Health>();
});
};
BENCHMARK_ADVANCED("Remove component from entities [50000]")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < LARGE; ++i)
{
auto e = w.make_entity();
w.set<Health>(e, {100});
entities.push_back(e);
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.remove<Health>(e);
}
return w.component_count<Health>();
});
};
}
TEST_CASE("Query performance benchmarks", "[benchmark]")
{
BENCHMARK_ADVANCED("Dense query (90% match)")(
Catch::Benchmark::Chronometer meter)
{
world w;
for(int i = 0; i < LARGE; ++i)
{
auto e = w.make_entity();
w.set<Position>(e);
if(i % 10 != 0)
w.set<Velocity>(e); // 90% match
}
meter.measure(
[&]
{
int count = 0;
w.query<Position, Velocity>([&](auto...) { count++; });
return count;
});
};
BENCHMARK_ADVANCED("Sparse query (10% match)")(
Catch::Benchmark::Chronometer meter)
{
world w;
for(int i = 0; i < LARGE; ++i)
{
auto e = w.make_entity();
w.set<Position>(e);
if(i % 10 == 0)
w.set<Velocity>(e); // 10% match
}
meter.measure(
[&]
{
int count = 0;
w.query<Position, Velocity>([&](auto...) { count++; });
return count;
});
};
}
TEST_CASE("Memory intensive benchmarks", "[benchmark]")
{
BENCHMARK_ADVANCED("Large component allocation")(
Catch::Benchmark::Chronometer meter)
{
meter.measure(
[&]
{
world w;
for(int i = 0; i < SMALL; ++i)
{
auto e = w.make_entity();
w.set<BigData>(e);
}
return w.total_component_count();
});
};
BENCHMARK_ADVANCED("Component memory reuse")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < SMALL; ++i)
{
auto e = w.make_entity();
w.set<BigData>(e);
entities.push_back(e);
}
meter.measure(
[&]
{
// Remove and re-add components
for(auto e: entities)
{
w.remove<BigData>(e);
w.set<BigData>(e);
}
return w.component_count<BigData>();
});
};
}
TEST_CASE("Archetype transition benchmarks", "[benchmark]")
{
BENCHMARK_ADVANCED("Single component addition")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < MEDIUM; ++i)
{
entities.push_back(w.make_entity());
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.set<Health>(e);
}
return w.archetype_count();
});
};
BENCHMARK_ADVANCED("Multi-component transition")(
Catch::Benchmark::Chronometer meter)
{
world w;
std::vector<entity_id> entities;
for(int i = 0; i < MEDIUM; ++i)
{
auto e = w.make_entity();
w.set<Position>(e);
entities.push_back(e);
}
meter.measure(
[&]
{
for(auto e: entities)
{
w.set<Velocity>(e);
w.set<Health>(e);
}
return w.archetype_count();
});
};
}

140
zecsy.h Normal file
View file

@ -0,0 +1,140 @@
#ifndef __ZECSY_H
#define __ZECSY_H
#ifndef ZECSY_MAX_COMPONENTS
#define ZECSY_MAX_COMPONENTS 128
#endif // !ZECSY_MAX_COMPONENTS
#define STB_DS_IMPLEMENTATION
#include "stb_ds.h"
#include <stdlib.h>
#include <stddef.h>
#include <stdint.h>
typedef struct
{
uint32_t bitset[(ZECSY_MAX_COMPONENTS + 31) / 32];
} archetype_signature;
#define RESERVED_ENTITY_ID 0
typedef size_t entity_id;
typedef size_t component_id;
typedef struct
{
const char* name;
component_id id;
size_t size;
} component_info;
typedef struct
{
struct{entity_id key; archetype_signature value;}* entity_map;
entity_id entity_id_counter;
entity_id alive_entities;
} world;
void make_world(world** w);
void destroy_world(world** w);
entity_id make_entity(world* w);
void destroy_entity(world* w, entity_id e);
int is_alive(world* w, entity_id e);
archetype_signature arhetype_of(world* w, entity_id e);
int is_same(archetype_signature a, archetype_signature b);
#endif // !__ZECSY_H
#define ZECSY_IMPLEMENTATION //TODO: REMOVE
#ifdef ZECSY_IMPLEMENTATION
void make_world(world** w)
{
if(!w)
return;
(*w) = malloc(sizeof(world));
(**w) = (world)
{
.entity_map = NULL,
.entity_id_counter = RESERVED_ENTITY_ID + 1,
.alive_entities = 0,
};
}
void destroy_world(world** w)
{
if(!w || !(*w))
return;
if((*w)->entity_map)
hmfree((*w)->entity_map);
free((*w));
(*w) = NULL;
}
entity_id make_entity(world* w)
{
entity_id e = RESERVED_ENTITY_ID;
if(w)
{
e = w->entity_id_counter++;
hmput(w->entity_map, e, (archetype_signature){0});
w->alive_entities++;
}
return e;
}
void destroy_entity(world* w, entity_id e)
{
if(w)
hmdel(w->entity_map, e);
}
int is_alive(world* w, entity_id e)
{
if(w)
{
return hmgeti(w->entity_map, e) != -1;
}
return 0;
}
archetype_signature arhetype_of(world* w, entity_id e)
{
if(w)
{
int index = hmgeti(w->entity_map, e);
if(index >= 0)
{
return w->entity_map[index].value;
}
}
return (archetype_signature){0};
}
int is_same(archetype_signature a, archetype_signature b)
{
for(int i = 0; i < sizeof(a.bitset) / sizeof(a.bitset[0]); ++i)
{
if(a.bitset[i] != b.bitset[i])
{
return 0;
}
}
return 1;
}
#endif // ZECSY_IMPLEMENTATION

391
zecsy.hpp
View file

@ -1,391 +0,0 @@
#pragma once
#include <bitset>
#include <concepts>
#include <cstdint>
#include <cstdlib>
#include <format>
#include <set>
#include <stdexcept>
#include <type_traits>
#include <unordered_map>
#include <vector>
#ifndef ZECSY_MAX_COMPONENTS
#define ZECSY_MAX_COMPONENTS 32
#endif // !ZECSY_MAX_COMPONENTS
namespace zecsy
{
using entity_id = uint64_t;
template<typename... T>
concept Component = []
{
static_assert((std::is_default_constructible_v<T> && ...),
"Should have a default constructor");
static_assert((std::is_trivially_copyable_v<T> && ...),
"Should be trivially copyable");
static_assert((std::is_trivially_destructible_v<T> && ...),
"Should be trivially destructible");
static_assert((std::is_standard_layout_v<T> && ...),
"Should have standard layout");
return true;
}();
class world final
{
public:
entity_id make_entity();
void destroy_entity(entity_id e);
bool is_alive(entity_id e) const;
size_t components_in_entity(entity_id e) const;
size_t entity_count() const;
size_t total_component_count() const;
size_t archetype_count() const;
template<Component T>
size_t component_count();
template<Component T>
bool has(entity_id e) const;
template<Component First, Component Second, Component... Rest>
bool has(entity_id e) const;
template<Component T>
T& get(entity_id e);
template<Component T>
void set(entity_id e);
template<Component T>
void set(entity_id e, const T& comp);
template<Component First, Component Second, Component... Rest>
void set(entity_id e);
template<Component First, Component Second, Component... Rest>
void set(entity_id e, const First& comp0, const Second& comp1,
const Rest&... rest_comps);
template<Component T>
T& ensure(entity_id e);
template<Component T>
void remove(entity_id e);
template<Component First, Component Second, Component... Rest>
void remove(entity_id e);
template<Component... T>
std::vector<entity_id> filter();
template<Component... T>
void query(std::invocable<entity_id, T&...> auto&& system);
size_t get_archetypes_checked() const;
size_t get_entities_processed() const;
private:
using comp_id = size_t;
using entity_group = std::set<entity_id>;
using archetype_signature = std::bitset<ZECSY_MAX_COMPONENTS>;
std::unordered_map<entity_id, archetype_signature> entity_to_comps;
entity_id entity_counter = 0;
size_t query_archetypes_checked = 0;
size_t query_entities_processed = 0;
struct component_pool
{
std::vector<uint8_t> data;
std::vector<size_t> free_list;
std::unordered_map<entity_id, size_t> entity_to_index;
};
std::unordered_map<comp_id, component_pool> pools;
std::unordered_map<archetype_signature, entity_group> archetypes;
template<Component T>
static comp_id get_component_id();
static comp_id next_component_id;
};
template<Component T>
inline world::comp_id world::get_component_id()
{
static comp_id id = next_component_id++;
return id;
}
inline world::comp_id world::next_component_id = 0;
inline size_t world::components_in_entity(entity_id e) const
{
return entity_to_comps.contains(e) ? entity_to_comps.at(e).count() : 0;
}
inline size_t world::entity_count() const
{
return entity_to_comps.size();
}
inline size_t world::total_component_count() const
{
size_t count = 0;
for(const auto& [id, pool]: pools)
{
count += pool.entity_to_index.size();
}
return count;
}
inline size_t world::archetype_count() const
{
return archetypes.size();
}
template<Component T>
inline size_t world::component_count()
{
const comp_id id = get_component_id<T>();
const auto it = pools.find(id);
return it != pools.end() ? it->second.entity_to_index.size() : 0;
}
inline size_t world::get_archetypes_checked() const
{
return query_archetypes_checked;
}
inline size_t world::get_entities_processed() const
{
return query_entities_processed;
}
inline entity_id world::make_entity()
{
auto id = ++entity_counter;
entity_to_comps[id] = {};
archetype_signature key;
auto& group = archetypes[key];
group.emplace(id);
return id;
}
inline void world::destroy_entity(entity_id e)
{
auto archetype = entity_to_comps[e];
auto& group = archetypes[archetype];
group.erase(e);
if(archetypes[archetype].empty())
{
archetypes.erase(archetype);
}
for(int id = 0; id < ZECSY_MAX_COMPONENTS; ++id)
{
if(archetype.test(id))
{
auto& pool = pools[id];
auto index = pool.entity_to_index[e];
pool.entity_to_index.erase(e);
pool.free_list.emplace_back(index);
}
}
entity_to_comps.erase(e);
}
inline bool world::is_alive(entity_id e) const
{
return entity_to_comps.contains(e);
}
template<Component T>
inline bool world::has(entity_id e) const
{
if(entity_to_comps.contains(e))
{
return entity_to_comps.at(e).test(get_component_id<T>());
}
return false;
}
template<Component T>
T& world::ensure(entity_id e)
{
if(!has<T>(e))
{
set<T>(e);
}
return get<T>(e);
}
template<Component T>
inline T& world::get(entity_id e)
{
auto id = get_component_id<T>();
if(!has<T>(e))
{
throw std::runtime_error(
std::format("Entity #{} doesn't have {}", e, typeid(T).name()));
}
auto& pool = pools.at(id);
auto index = pool.entity_to_index.at(e);
return *reinterpret_cast<T*>(&pool.data[index * sizeof(T)]);
}
template<Component T>
inline void world::set(entity_id e, const T& comp)
{
if(has<T>(e))
{
get<T>(e) = comp;
return;
}
auto id = get_component_id<T>();
auto& pool = pools[id];
size_t index;
if(!pool.free_list.empty())
{
index = pool.free_list.back();
pool.free_list.pop_back();
}
else
{
index = pool.data.size() / sizeof(T);
pool.data.resize(pool.data.size() + sizeof(T));
}
new(&pool.data[index * sizeof(T)]) T(comp);
pool.entity_to_index[e] = index;
auto& archetype = entity_to_comps[e];
auto old_archetype = archetype;
archetype.set(id);
auto& group = archetypes[old_archetype];
group.erase(e);
if(archetypes[old_archetype].empty())
{
archetypes.erase(old_archetype);
}
archetypes[archetype].emplace(e);
}
template<Component T>
inline void world::set(entity_id e)
{
set(e, T{});
}
template<Component T>
inline void world::remove(entity_id e)
{
if(!has<T>(e))
{
return;
}
auto id = get_component_id<T>();
auto& archetype = entity_to_comps[e];
auto& old_group = archetypes[archetype];
old_group.erase(e);
if(old_group.empty())
{
archetypes.erase(archetype);
}
archetype.reset(id);
archetypes[archetype].emplace(e);
auto& pool = pools[id];
auto index = pool.entity_to_index[e];
pool.free_list.push_back(index);
pool.entity_to_index.erase(e);
}
template<Component First, Component Second, Component... Rest>
inline bool world::has(entity_id e) const
{
return has<First>(e) && has<Second>(e) && (has<Rest>(e) && ...);
}
template<Component First, Component Second, Component... Rest>
inline void world::set(entity_id e)
{
set(e, First{});
set(e, Second{});
(set(e, Rest{}), ...);
}
template<Component First, Component Second, Component... Rest>
inline void world::set(entity_id e, const First& comp0, const Second& comp1,
const Rest&... rest_comps)
{
set(e, comp0);
set(e, comp1);
(set(e, rest_comps), ...);
}
template<Component First, Component Second, Component... Rest>
inline void world::remove(entity_id e)
{
remove<First>(e);
remove<Second>(e);
(remove<Rest>(e), ...);
}
template<Component... T>
inline std::vector<entity_id> world::filter()
{
archetype_signature required;
(required.set(get_component_id<T>()), ...);
query_archetypes_checked = 0;
query_entities_processed = 0;
std::vector<entity_id> result;
for(const auto& [archetype_key, entities]: archetypes)
{
query_archetypes_checked++;
if((archetype_key & required) == required)
{
query_entities_processed += entities.size();
result.insert(result.end(), entities.begin(), entities.end());
}
}
return result;
}
template<Component... T>
inline void world::query(std::invocable<entity_id, T&...> auto&& system)
{
for(auto e: filter<T...>())
{
system(e, get<T>(e)...);
}
}
}; // namespace zecsy